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Microscopic theory is used to obtain effective interactions between colloidal particles in nematic fluids
subjected to an external orienting field. It is shown that the field can dramatically change the effective inter-
colloidal interactions without altering the symmetry of the director configuration around a single particle. Our
calculations suggest that a rich variety of colloidal structures can be promoted by varying the external field.
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Nematic-colloid dispersions have unique physical
properties and exhibit a variety of structures, such as colloid
chains �1,2�, periodic lattices �3�, and cellular forms �4�. A
colloidal particle interacts with molecules of the fluid and
can orient them with respect to its surface. Each colloidal
particle creates a nematic “coat,” altering the local density,
the degree of orientational order, and the director field of the
bulk nematic. The coats interact with each other creating
effective interactions among the colloidal particles. Since in
orientationally ordered fluids the nematic coats do not have
spherical symmetry, the effective colloid-colloid pair interac-
tion depends on the orientation of the center-center vector
with respect to the bulk director, as well as on the interpar-
ticle separation.

A growing number of experimental �5� and phenomeno-
logical �6–8� approaches have been employed to investigate
effective colloidal interactions and related structures. Most
theoretical studies are consistent in that the particular sym-
metry of the director field configuration �the defect� around a
single colloidal particle defines the effective intercolloidal
interaction. Defects with dipole symmetry result in the for-
mation of colloidal chains along the bulk director. In con-
trast, so-called quadrupole defects lead to repulsive forces
both along and perpendicular to the bulk director, with the
maximum attraction occuring when the intercolloidal vector
is at an angle of 49° with respect to the director. In this Rapid
Communication we argue that this picture is significantly
oversimplified. We show that an aligning field can change
the sign of effective intercolloidal forces in a given direction
without changing the defect symmetry. This is relevant and
significant because external fields of different origins �e.g.,
magnetic, surface induced� are frequently present in experi-
mental situations. We employ a statistical mechanical theory
that begins with the particle pair interactions and takes into
account orientational and density fluctuations. It is based on
an integral equation method and allows all relevant short-
and long-range correlations to be calculated.

Our model �9–11� consists of a system of uniaxial par-
ticles �nematogens �N�� interacting through a pair potential
taken to be the sum of a hard-sphere interaction �sphere di-
ameter �� and an anisotropic part defined by

v�1,2� = v2�R12�P2��̂1 · �̂2� , �1�
where P2��̂1 ·�̂2� is the second-order Legendre polynomial,
R12 is the center-center distance, the unit vector �̂i denotes
the orientation of particle i, and

v2�R12� = − AN�zN��2exp�− zNR12�
R12/�

. �2�

Here, AN and zN are the energy and the length parameters
characterizing the interaction. The nematogen interaction
with the external field is given by

vN�1� = − W�5P2��̂1 · n̂�, W � 0, �3�

where W is the field strength. This interaction orders the bulk
director n̂ parallel to the field.

Colloidal particles �C� interact as hard spheres of diam-
eter �. The interaction of nematogens with the surface of a
colloidal particle �anchoring� is modeled as �11,12�

vNC�1,2�

= �� , if s12 � �/2,

− AC exp�− zC�s12 − �/2��P2��̂1 · ŝ12� , if s12 � �/2,
�

�4�
where s12 is a vector connecting the nearest point of the
surface of colloid 2 with the center of nematogen 1, and
ŝ12=s12/s12. AC and zC are energy and length parameters.
Note that positive and negative values of AC favor, respec-
tively, perpendicular and parallel orientations of nematogen
molecules with respect to the surface.

The calculation of effective colloid-colloid pair potentials
in a nematic medium requires a solution of the Ornstein-
Zernike �OZ� equations for the nematogen-colloid mixture at
infinite dilution of colloidal particles �13�. These equations
are

hNN�1,2� = cNN�1,2� + SNN�1,2� , �5�

hNC�1,2� = cNC�1,2� + SNC�1,2� , �6�

hCC�1,2� = cCC�1,2� + SCC�1,2� , �7�

where

S���1,2� =� c�N�1,3��N�3�hN��3,2�d�3� , �8�

c�� and h�� are the direct and total correlation functions, and
�N�3� is the density distribution function of the bulk nematic.
Also, for a nematogen, the label 1 denotes the coordinates
�R1 ,�̂1�; for a colloid 1	�R1�,

The bulk functions can be found by employing Eq. �5�
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together with the exact Lovett relation and an appropriate
closure. For the present model, this problem has been solved
analytically in the mean spherical approximation �MSA�
�9,10�. The function �N�1� gives the density-orientational
distribution in the pure nematic, and �N�1��1+hNC�1,2��
gives the complete distribution of nematic fluid about a col-
loidal particle �labeled 2�. This takes into account all effects
induced by the colloidal particle. Maps of the nematic distri-
bution about colloidal particles have been given for a range
of parameters �12�. It should be noted that all director fields
around a single colloidal particle obtained for our model pos-
sess up-down symmetry with respect to the external field.

The effective potential between two hard colloidal spheres
has a very simple form within the hypernetted-chain �HNC�
approximation �13�,

	CC�1,2� = kBT�cCC�1,2� − hCC�1,2�� , �9�

and can be determined through Eq. �7�. Here, as in Ref. �12�,
hNC�1,2� is calculated directly from Eq. �6� using the
nematogen-wall direct correlation function as an approxima-
tion for cNC�1,2�. Our calculations show that for sufficiently
large colloidal particles this approximation agrees with an
exact condition resulting from the inpenetrability of hard
cores. It gives a valid MSA solution to Eq. �6� for all sets of
model parameters considered in this paper. This is very con-
venient because within the MSA the nematogen-wall direct
correlation function for the present model can be obtained
analytically for different orientations of the wall with respect
to the field �11�. Calculation details will be published else-
where. Here we simply note that the effective HNC potential
can be expressed in the spherical harmonic expansion

	CC�1,2� = 

l=0,2,4

	l�R12�Yl0�R̂12� , �10�

where the unit vector R̂12 denotes the orientation of R12 with
respect to the field.

We have calculated interactions between pairs of identical
colloidal particles at different field strengths �W /AN

=10−5 , . . . ,1� and for �=50� , . . . ,1000�. All results pre-
sented are for the fixed temperature kBT /AN=1 and the nem-
atic interaction length parameter zN�=1. Systems with both
long-range �zC�=0.2� and short-range �zC�=1� anchoring
are investigated. This paper focuses on perpendicular anchor-
ing �AC /AN=2�. The theory can be solved for planar anchor-
ing �AC /AN=−2� as well, and these results will be given
elsewhere.

All calculated effective potentials are “nonpolar” and cy-
lindrically symmetric about the field direction. Therefore, we
plot only a quarter of the two-dimensional slice that passes
through the centers of colloidal particles �Figs. 1–3�. One
colloidal particle is shown as a white circle of radius � /2
and the gray stripe of width � /2 surrounding it denotes the
region inaccessible to the center of the other colloidal par-
ticle due to the hard-core repulsion. Note that in all plots � is
the unit of length and the external field is directed along the
vertical axis. The effective potential 	CC /kBT as a function
of R12 is shown by different colors; the blue regions indicate
the lowest values and are the most attractive.

Figures 1 and 2 illustrate the potential landscapes for col-
loids of diameter 50� with perpendicular anchoring. The re-
sults strongly depend on the reduced density 
=��N�3 /6 of
the bulk fluid. Note that at the given temperature and zero
external field, 
=0.2 �Fig. 1� corresponds to a bulk isotropic
state near the isotropic-nematic phase transition, whereas 

=0.35 �Fig. 2� is a stable nematic �S2=0.714� �14�. First we
consider the low-density case where the orientational order
in the bulk is induced by the external field. For W /AN
=0.001, the effective potential is almost spherically symmet-
ric; a strong repulsion ��600kBT� at contact becomes a
strong attraction for distances larger than 5�. The strong at-
traction likely indicates nematic bridge formation in confined

FIG. 1. �Color� 	CC�1,2� /kBT for zC�=0.2, AC /AN=2, �
=50�, 
=0.2, kBT /AN=1, and different external fields: �a� W /AN

=0.001, �b� W /AN=0.1, and �c� W /AN=1. Distances in units of �
are indicated on both axes, and the color code is shown for each
plot. The positions where the potential changes sign �	CC=0� are
shown by solid black lines.
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geometry. The strong repulsion is connected with the fact
that the director field between the two colloids undergoes
elastic deformation as the spheres approach each other. We
would expect this repulsion to decrease for larger colloids,
because surfaces with lower curvature will impose weaker
deformations of the nematic bridge. Indeed, the landscapes
calculated for �=100� and larger have no red halo, and the
potential remains negative at contact.

These observations are consistent with conclusions of
Ref. �6�, where colloidal interactions in the isotropic phase
were studied phenomenologically without any specification
of the colloid-nematogen interactions. We have found that
the anchoring length parameter, zC, plays a crucial role in
defining how the colloidal interactions behave. If two sets of
anchoring parameters �AC ,zC� produce the same nematic dis-
tribution on the colloidal surfaces, the resulting pair interac-
tion is longer ranged and stronger for the smaller zC. Gener-

ally, as zC increases, the equilibrium distance between a
colloidal pair decreases. For example, colloidal particles of
diameter 50� with zC�=1 and all other parameters as in Fig.
1�a� attract each other at contact.

As the field increases, the nematic phase transition in con-
fined geometry �probably complemented by condensation� is
promoted in the vicinity of the poles, so in this case the
strongest attraction can appear in the field direction �Fig.
1�b��. These effects can be better understood by considering
maps of the nematic distribution, which are given for the
same parameters in Ref. �12�. The situation is different for
stronger fields �Fig. 1�c��. Now the induced order in the bulk
is significant �see Fig. 3�c� of Ref. �12��, and the nematic
phase transition in confined geometry is less beneficial. The
strongest attraction occurs at contact at the equator. In this
region the field and anchoring interactions strongly compete,
creating depleted zones with a lower orientational order �12�.
The resulting attraction can be viewed as a depletion inter-
action, although the interaction is stronger, longer ranged,
and grows more rapidly with particle size than in isotropic
fluids.

In the stable nematic region �
=0.35�, phase transitions
induced by confined geometry are supressed, and at strong
fields depletion interactions are most important �Fig. 2�c��.
For weaker fields �Figs. 2�a� and 2�b�� the situation is quali-
tatively different. The colloidal interactions are now both
long range and strong �Fig. 2�a��. The strongest repulsions
appear at 0° and 90° to the field, whereas the strongest at-
traction occurs at �45° latitude. Qualitatively, this behavior
agrees with the predictions of elastic theory �7�. From a mi-
croscopic point of view, the attraction at weak fields can be
understood by considering reorientation phenomena in tilted
geometry. At 
=0.35, the liquid is less compressible and has
more saturated orientational order than at 
=0.2, but the
susceptibility of the bulk director to reorientation by very
weak fields tends to infinity �15�. Therefore colloidal par-
ticles create significant, long-range changes in the bulk nem-
atic. The strongest reorientation, driven by the so-called flip
effect �11�, is induced by regions on the colloid surfaces that
are tilted at �45° to the field.

The l=4 �quadrupole� term in Eq. �10� dominates

FIG. 2. �Color� As in Fig. 1, but for 
=0.35.

FIG. 3. �Color� As in Fig. 1, with zC�=1, AC /AN=2, �=50�,

=0.35, and W /AN=10−5.
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	CC�1,2� as W→0 and R→�, and numerically we find that
	CC�1,2� behaves as �6 /R5 in this limit. This is consistent
with results of Ref. �7�b��. However, for small R the l=0 and
l=2 terms are important and the �6 scaling does not apply
even at zero field. For example, at the point of strongest
attraction, the effective potential scales somewhere between
� and �3. Note also that the attractive well at �45° is spa-
tially localized and does not extend into the contact separa-
tion. However, it must be emphasized that the equilibrium
position decreases in distance and changes direction �varying
from �45° to the equator� with increasing field �Fig. 2�.
With shorter range anchoring depletion dominates at much
weaker fields; compare Fig. 3 �zC�=1, W /AN=10−5� with
Fig. 2�c� �zC�=0.2, W /AN=1�. The same behavior is ob-
served for much larger colloids; e.g., for �=1000�, zc�=1,
and W /AN=10−5, the maximum attraction ��8000kBT� oc-
curs at the equator.

It is interesting to ask how our model can be mapped onto
real experimental situations. If we take as an example
kBT /AN=1, 
=0.35, and W=10−5kBT, then in our model the
correlation length of the director fluctuation is � /�
=1.61�kBT /W. Note that � is analogous to the magnetic
�electric� coherence length �15�. At T=300 K and �=2 nm,
these give �=1.02 
m. This is comparable with the values
found for the nematogen 5CB, i.e., ��1 
m at the magnetic
flux density B=4.7 T �17�. Further, for a nonpolar nemato-
gen, W and the local electric field intensity, E, are related by
��E2=3�5W. For 5CB, ��= �4��0�40 Å3 �16�, which gives
E=7.9 V/
m. It is worth noting that this value represents a
crude upper limit on the external field. Since we do not take
account of the fields due to molecular polarization, the actual
applied field could be considerably smaller than our estimate.
Note that for larger nematogens the same � could be pro-
duced by weaker fields. The influence of surface effects is

more difficult to estimate. The direct influence of interfaces
on � has not been systematically studied. However, it is
known that rubbed surfaces can pinch the director and su-
press fluctuations, such that the effective fields associated
with surfaces could be rather large.

Next consider a pair of colloidal particles with �
=1000�=2 
m, AC /AN=2, and zC�=1 immersed in the sys-
tem discussed above. Note that for this example the
nematogen-colloid interaction range is of the order of the
nematogen “length.” The strength of the nematogen-colloid
interaction is determined by AC; the sign of this parameter
will vary for different surfactants, and its magnitude depends
on the surfactant concentration on the colloidal surfaces. For
the example we are considering, the potential at 0° increases
from �28kBT at R=2� to �705kBT at R=1.2�, which gives
an average force of �2.0pN over the interval. In the zero
field limit, 	4�R=1.5��=216kBT, and from this we estimate
the anchoring energy as defined by Eq. �7� of Ref. �7�a�� to
be of order 10−5 J /m2.

In conclusion, we have employed a microscopic theory to
calculate effective colloidal pair interactions in nematic flu-
ids. The model includes an external orienting field. Our re-
sults indicate that colloidal interactions in orientationally or-
dered fluids are influenced by three main factors: phase
transitions in confined geometry, depletion effects, and elas-
tic interactions between the nematic coats surrounding col-
loidal particles. Changing the external field shifts the relative
importance of these factors, and significantly alters the effec-
tive colloid-colloid interaction. A rich variety of equilibrium
colloidal structures can be promoted by different orienting
fields, without changing the composition of the system.
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